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Abstract. In this article we calculate various parameters which characterize the size and 
shape of random walks utilizing a recently developed I ld  expansion technique, where d 
is the spatial dimension in which the random walk takes place. A new procedure for 
extracting the averages of the principal radii of gyration is presented and the calculation 
is carried out to order l / d 2 ,  which is one order higher than previous work. Comparison 
with the rcsults of numerical simulations provides new insights regarding the accuracy of 
the I ld  expansion procedure. 

1. Introduction 

This paper is the continuation of our previous work on the study of shapes of random 
walks (see Rudnick and Gaspari (1986) and Gaspari er a/ (1987) and references therein; 
for an alternate approach, see Eichinger (1985) and Shy and Eichinger (1989)). As 
before, we limit our consideration to random walks which are not self-avoiding. The 
core of an analysis is the study of the resolvent, R(A) ,  

R ( A )  = Tr (-) 1 
AI-T 

of the complex variable, A, and where I is the identity operator and T is the radius of 
gyration tensor (Solc 1971). Previously we were able to obtain the first two terms in a 
l l d  expansion for the average of the components of the radii of gyration, ( R f ) .  
Comparison between a theoretical prediction and computer simulations done by Bishop 
and Michel(1985,1986) and Bishop and Saltiel (1986) are remarkably good, the error 
being of the order of 5% in three dimensions. This encourages us to investigate the 
next higher-order term, in the hope of substantially reducing the remaining discrepancy, 

Using the techniques of contour integrals, we can extract analytical expressions 
for the principal radii of gyration and their probability distribution function. We find 
that, for linear chains, the average principal radii of gyration are given by 

3 

The ratios between the eigenvalues are, to order l / d z ,  

One property of this new result is the dependence on spatial dimension of the ratios 
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of the eigenvalues, which is not a property of the O(l/d) results. Our new results are 
discussed in detail in section 4 where they are also compared with numerical simulations 
The agreement between the analytical expression and the results of numerical simula- 
tions for the largest principal radius of gyration is remarkably good, even at very low 
dimensions, such as d = 2, d = 3. Comparing l / d  expansion results with our simulations 
in two and three dimensions, and with the numerical results reported by Bishop and 
Saltiel (1986) in two to five dimensions, we find that the probable error for the largest 

While the l /d  expansion works surprisingly well at low order there is reason to 
believe that it is probably not mathematically well behaved. A key assumption in our 
analysis is almost certainly not justified in the dimensionalities of interest. This assump- 
tion is described above equation (9) and further discussed in section 4.3. The behaviour 
of the coefficient of l /dZ in equation (3), in which either i or j may be as large as d, 
may bc : a h  as a:: ifidicatiox of pok-tia! shortcofiixgs of:hc n~:hod, and is, ix fzc:, 
an indication that the l / d  expansion is not a convergent series but an asymptotic one. 

The plan of this paper is as follows. In the next section we present the basic 
formalism and the terminology to be used. Section 3 sketches the derivation of the 
l /d2  correction for the analytical expression of the resolvent function (R(A)) .  The 
details are presented in the appendix. The formalism which we have developed for 
the analysis of the resolvent function is used to calculate the principal radii of gyration. 
Explicit expressions for (A,) and (A:) are derived and presented in this section. The 
final section is devoted to the discussion of the l /d2  results and their comparison with 
numerical simulations. 

:" I^^^ .Le- 10, :- "I,  .I:.---":--- cigr;crva.ruc: ID KDD wau L I O  111 a n  UIIIIGIIDIVIID. 

2. General considerations 

A fundamental quantity which serves to characterize the shape of an N-step random 
walk is the radius of gyration tensor T (Solc 1971). The elements of T are given by 

1 N+I 

(Xi)=- c Xli. 
(N+1) I = I  

Using the displacement vectors 9. which connect the a th  and (a + 1)th vertices, it 
can be shown that the elements of T become (Kramers 1946, Fixman 1962, Forsman 
and Hughes 1963) 

where a,@ is a real, symmetric matrix with elements 

a ( X + i - P j  a <,i3 
1 

a,@ =- 
(N+1)2 

(7) 
1 

(N+1)2 P ( N + l - a )  a > P  -~ - 

and 7.; is the ith component of the displacement vector 9. for the a th  step. 
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For essentially all unrestricted walkg, the prohability distribution function P(qa , )  
for the chain segments qo, can he taken to be Gaussian in the limit of large N >> 1 
(Kuhn 1936, 1939, FJory 1971). Such a walk is equivalent to a random flight with the 
following probability distribution For 7: 

d being the dimensionality. The normalization is chosen so that the average length of 
a link is unity, i.e. 

The  fundamental quantity which will be used in our study of the shapes of random 
walks is the resolvent, R(A). Using equation (l), the fact that the imaginary part or 
(RIA) )  is the ensemble average of the probsbility distribution of eigenvalues of T, 
some standard results of contour integration, and assuming that the resolvent and its 
averages are sufficiently well behaved that averages and integration operations can he 
commuted, we have 

where C, is a small contour which encloses A,. This result require3 (R(h)) to be analytic 
except for poles at the eigenvalues, which is indeed the case in high dimensions. 
Similarly, we have 

Known results to first order in t j d  can he rederived easily using the above expressions. 

2.1. Evahatian of the resolvent function (R(A1) 

Expanding the resolvent function R(A) in powers of T we obtain 

Thus, 

A diagrammatic method can now be used to evaluate (R(A)) (Gaspari et ul1987). We 
can write 

-;a. 
wherethematrices are thesameforevery N-steprandom walkandtheirspectrum 
is very well known, with eigenvalues 

(I. = - W+1) i = l , 2  , . . . ,  N. 
v2i2 
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(a) (b) 

Figwe 1. ( a )  The representation of Tr(T/A)". ( b )  The representation of the lowest-order 
contribution to (Tr(1IA)"). 

- l n e  averages in equation ( i 3 j  are thus over the q s .  Recaii that the displacements 
corresponding to different links are statistically independent. Therefore, for linear 
chains, 

1 
(Il,i%j) =; S&,. (14) 

Sinca ;isii&uiion of ihe q s  is Gaussian we aiso have 

( q ~ , i , q ~ ~ ~ ~ q = , ~ , q = . ~ ~ )  

and, in general, the average of a product of 2m 7s will equal a sum of products of 
the average of m pairs of 7s. The sum is over the (2m)!/Z"m! distinct ways of 
constructing m pairs of the 2m qs. 

A diagrammatic method has been introduced to keep track of the pairings of 7s. 
This method can be used to systematize the l / d  expansion. The details of the graphical 
method are given in a previous paper, and we refer the reader to that work (Gaspari 
et a1 1987) for specifics. Here we directly apply the technique to the calculation of 
(R(A)).  

As an example of the application of the method, consider Tr(T/A)", the nth-order 
term in the summation in equation (11 ) .  This term is represented as the ring diagram 
displayed in figure 1. The large dot that separates the crosses representing the q s  at 
the two ends of the right-hand side of equation (13)  is, like the other dots in the 
diagram, a representation of the component and labelled by ik.  The zeroth-order 
contribution to (Tr(T)/A)") is obtained by pairing off adjacent qs only. The diagram 
representing this pairing is shown in figure l(b).  This diagram represents 

3. < R ( A ) ) :  l/d2 contributions 

In order to evaluate the l /d2  correction to the resolvent, it proves convenient to 
separate the contribution into two classes, irreducible and reducible diagrams. Consider 
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4.- ' t i  ... 
( b )  

FigureZ. ( a )  ~~hreeretsafnsinthediagrammaticrepresentationof(T/A)",shown encircled. 
( b )  The three sets are pulled together as a preliminary step in the pairing of the vs in the 
sets. 

.. .. . .  . .  A=& M O * - . .  . LA,-. *- Id *=T T 'Ai'' 
T'T . .  .. 4 . .  .. 

(01 ( b )  

Flgum 3. ( a )  The irreducible pairing of the 7 s  in the three sets brought together in 
figure 9( b). ( b )  A reducible pairing of the 1)s in these sets. 

for example the three sets of q s  in a chain, shown encircled in figure 2 ( a ) .  The chain 
is 'bent' so that pairs are moved near to each other as in figure 2(b ) .  Figure 3 ( a )  
displays an irreducible pairing of the six q s  in the three sets and figure 3 ( b )  displays 
a reducible pairing of these six qs. A diagram is irreducible when a pairing of the qs 
in a group of n sets cannot be broken down into pairings between qs in groups of n 
and n - m sets where no pairings exist between an q in one group and an q in another. 

3.1. Irreducible diagrams 

Consider the kth, ( R  + m)th and ( k  + m + r)th pairs of figure 1, counting clockwise, 
and bring the 6qs together as shown in figure 4. 

,- \ .-  
\ 

I I 
I I 
\ , 
\ , . _. 

Fipurel  Three setsafnsin the diagrammatic representation of(T/A)" areshown encircled. 
T h e  three sets are pulled together as a preliminary step in the pairing of non-adjacent 7%. 
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b 

C 

*-. I \  

'f 
1 ;  '--* 

4 

Figure 5. The four topologically distinct way of pairing the six 7s appearing in figure 4 
are exhibited in ( I r ) - ( d ) .  

The pairings of non-adjacent qs occur between the kth, (k+  m)th and (k+  m + r)th 
pairs of the qs pairs. The four ways of pairing them are displayed in figure 5 ( a - d ) .  
If the remaining pairings are all of adjacent qs, we obtain a contribution in l / d 2  to 
l/A(Tr(T/A)") from the irreducible pairings (see table 1). The reader is referred to the 
appendix for details of the calculation. Here we only give the final result. The total 
contribution from the irreducible diagrams to the resolvent function ( R ( A ) )  is 

3.2. Reducible diagrams 

Similarly, we consider the kth, (k+m)th,  (k+m+n) th  and (k+m+r+p) th  pairs of 
figure 4, counting clockwise. We bring the eight qs together as shown in figure 6. The 
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Table 1. The contribution of the irreducible diagrams to Tr(T1.h)" 
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Diagram Contribution 

I I 
I I 
I I 

I , ._- '\ 
Figure 6. Four sets of 1)s in the diagrammatic representation of (TIA)" are shown encircled. 
The four sets are pulled together as a preliminary step in the pairing of nonadjacent t)s. 

l /d2 correction term arises because of the pairings of non-adjacent qs that occur 
between these pairs, and the six different ways of pairing them are displayed in figure 
7 ( a - f ) .  The remaining pairings are all of adjacent 7 s .  After summing all the contribu- 
tions of the reducible diagrams to the resolvent function ( R ( A ) )  (see table 2). we obtain 
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Figure 7. The six topologically distinct ways of pairing the light ns appearing in figure 6 
are exhibited in (a) - ( ! ) .  



Random walks at order l / d 2  

Table 2. The contribution of the reducible diagrams to Tr(T1,t)". 
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Diagram Contribution 
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the following result for the reducible contribution to the resolvent function: 
1 1  a: a; 4 

ai 5 + 3 - 7  1 - 1 1  
( R ( A ) ~ =  12- -1- 

A d2 ; ( A - a t )  A d i+ j (A-a<)3  (A-ao2  

Summing the irreducible and reducible contributions gives the total l / d 2  term in the 
expansion of the resolvent function, which, with the use of (9), yield the following 
result for the I/d2 correction to the average principal radii of gyration: 

The sum on the left-hand side of this equation can be carried out exactly using contour 
integration methods. We find 

m ' j 2  1 7i2 v -=--- 
j(&l ( i2-j2)3 32i4 48i2' 

Thus, our final result for ( A i )  to order l / d 2  is 

( & ) = a i  [ I+-+, :d d' (7i4T :2>1+0(%> 
where the zeroth-order term 

(20) 

(21) 

The O(l /d)  contribution to equation (21) was previously derived (Rudnick eta1 1987, 
Gaspari et a /  1987). 

Following the procedures outlined above, we find that the l / d 2  contribution term 
to  the average of the square of the eigenvalue. (A?). is given by 

We make use of the following results: 
1 3 1  

2 -= --- , ( j2 - i2 )  4 i 2  
(j#i) 
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The l / d 2  correction term becomes 

Finally, we obtain to order l / d 2 :  

The variance of the distribution is given by 

((A, -(Aj))’)= (w)2[;+~ 2 1 (12 T2 i 2 + : ) ]  + O ( $ )  
T2 i2  

and the ratios of the eigenvalues are 

(A,) i2  d’ 48 

From equation (28) we note that the ratios of the eigenvalues for linear chains depend 
on the spatial dimensions at order l/d2. 

4. Comparison with numerical simulations 

There is no experimental data to compare with our l / d  expansion-predicted results; 
however, there exist numerical simulations. Here, we consider two sets of data. The 
first consists of data obtained by Bishop and Saitiei (i986j, and Bishop and Michel 
(1986), where the shapes of linear and ring polymers, with and without excluded 
volume, were investigated numerically via Brownian dynamics in a variety of spatial 
dimensions. In their polymer model, N beads are joined together by nearest-neighbour 
harmonic spring forces, and each head is subject to a random force and a frictional 
force proportional to the velocity. The other set consists of data we have generated 
for open WaiKs. Tne iwo sources of daia uiiiize diiiereni ways of expioring random 
walk configurations. In our theoretical study of shapes of random walks, there was no 
interaction between bonds nor were any other forces taken in consideration. The 
advantage of using our method of generating random walk configurations is its direct 
relation to the real random walk process, and the fact that it is an efficient algorithm 
to generate walks of very large number of steps. The advantage of using the data 
obtained by Bishop and co-workers is that their model is closer to the nature of real 
polymers. In addition, they were able to study ring polymers as well. 

Before proceeding with the comparison between our l / d  expansion-predicted 
results and the numerical calculations, we test both sources of data using exact analytical 
results for the square of the radius of gyration open walks. 

4.1. Average radius of gyration (R’) 

Recall that the analytical formula for the square of the radius of gyration ( R‘) = Zf-! (A,) 
is an exact result and is given by ( R 2 ) =  (N+  1)/6 for an N-step open walk or linear 
chain and by (R’) = ( N  + 1)/ 12 for an N-step closed walk or polymer ring (Kramers 
1946, Zimm and Stockmeyer 1949). 
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Table 3. Eigenvalues ( A , )  and their ratios for linear chains. Comparison between I j d  
expansion and exact results and numerical  calculation^ for an N= 100-step walk. 

I/d expansion theoretical results ( N  = 100) 
Numerical 

Dimension (d )  Eigenvalue 0th order 1st order 2nd order results 

2 14.071 
3.518 
4.00 

101/6= 16.83 

12.792 
3.198 
1.421 

9:2.25 : 1 
4.00 
1Ol/6 = 16.83 

- 
14.517 14.269 
4.023 2.779 
3.383 5.134 

101/6= 16.83 17.048 

12.990 12.925 
3.423 2.873 
1.651 1.042 

7.35: 1.99: I 12.404:2.757: 1 
3.726 4.498 
101/6= 16.83 16.84 

We have tested our numerical simulations for the open walk against these exact 
results. For an N = 100-step walk, the difference between our data and the exact results 
is about 1.26% in two dimensions and 0.04% in three dimensions. The agreement is 
very good. We are thus encouraged to compare the 1 f d expansion-predicted results 
with our numerical calculations. This comparison is displayed in table 3. 

The data obtained by Bishop and Saltiel (1986) for the eigenvalues of the radius 
of gyration tensor were also tested by comparing their numerical result for the average 

I/d expansion theoretical results (N =32) 
Numerical 

Dimension (d)  Eigenvalue 0th order 1st order 2nd order results 

5 

3.343 
0.835 
4.00 
33/6= 5.5 

3.343 
0.835 
0.371 
0.203 
4.00 
33/6= 5.5 

3.343 
0.835 
0.371 
0.2w 
0.133 

4.597 
1.149 
4.00 
3316 = 5.5 

3.970 
0.992 
0.441 
0.248 
4.00 
33/6=5.5 

3.845 
0.961 
0.427 
0.240 
0.153 

4.743 
1.314 
3.383 
3316 = 5.5 

4.007 
1.033 
0.483 
0.290 
3.845 
33/6=5.5 

3.868 
0.987 
0.454 
0.267 
0.181 

4.8150.28 
0.92+0.53 
5.22 
5.73 

4.04t0.28 
0.96+0.03 
0.38t0.01 
0.185 0.01 
4.20 
5.56 

3.95t0.17 
0.99t0.05 
0.37t0.02 
0.19t 0.04 
0.11 +0.001 

4.00 4.00 3.901 3.99 
(RZ) 3316= 5.5 33/6=5.5 33/6=5.5 5.61 
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radius of gyration with the exact result. For an N = 32-step walk, using their numerical 
results as displayed in table 4, one finds a discrepancy between their numbers and the 
exact result for the average radius of gyration of about 4% in two dimensions, 1% in 
four dimensions and 2% in five dimensions. Again, there is good agreement between 
their data and the exact result. 

4.2. Eigenvalues ( A 3  and their ratios: comparison of l/dZ expansion with numerical results 

In the previous sections, we were able to obtain the analytical expression for the 
average principal radii of gyration of an open walk embedded in d-spatial dimensions. 
We found that. to second order in lid, the ith eigenvalue is given by 

(hi) = (N+1) r2i2 [ 1 +A+$ ($ -31 + o( $) 
and that the ratio of the eigenvalues is 

Table 3 contains a comparison between predictions based on equations (29) and (30) 
and our numerical data. Table 4 displays another comparison between the theoretical 
predictions with the numerical calculations of Bishop and Saltiel (1986). 

First reconsider the eigenvalues of the radius of gyration tensor themselves. Con- 
sidering the largest eigenvalues only, in comparing our simulations, the error difference 
between the two findings in d = 3 is about 20% at zeroth order in I j d  and decreases 
to 0.5% when one includes the second-order term of the l j d  expansion. The agreement 
is excellent even for a small number of steps and at relatively low spatial dimensionality. 
In two dimensions, the error difference for the largest eigenvalue decreases from 28% 
at zeroth order to slightly less than 2% when one includes the next higher-order terms. 

By contrast, considering the lowest eigenvalues, agreement between our predictions 
and the numerical results becomes worse as one includes higher-order terms of the 
I j d  expansion. In three dimensions, from the comparison in table 3, the error difference 
between the two results increases from 8.3% at zeroth order of the expansion to 36% 
when one includes the second-order term in Ijd. A possible explanation is as follows. 
Our eigenvalues will generally have overlapping distributions, as displayed in figure 
8. Suppose one of the eigenvalues, a l .  has a larger average than a 2 ,  i.e. (aJ>(a2). 
The eigenvalue associated with the distribution closer to the origin can be larger than 
the eigenvalue associated with the distribution further out, especially in the overlap 
region indicated in figure 8. However, our method will always identify the second 
eigenvalue above as the larger one because our analysis is based on an expansion 
about d =cc delta function distributions. It is clear that the overlap region covers most 
of the entire portion of the curve of the ‘smaller’ eigenvalue, but it only covers a small 
portion of the curve of the ‘larger’ eigenvalue. Therefore, the overlap will have a 
stronger effect on the smaller eigenvalue. The extent to which these peaks overlap will 
be discussed later. 

A similar comparison of the eigenvalues of the radii of gyration tensor for linear 
chains can be made using the data obtained by Bishop and Saltiel and is displayed in 
table 4. The trends are found to be similar. In two dimensions, the agreement, in the 
case of A,,  is improved as the highest-order terms of the l j d  expansion are included. 
There is a systematic improvement for the largest eigenvalue in every dimension. 
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L Eigenvalue 

Figure 8. Probability distributions for the largest eigenvalue ( P , ( a J )  and for the smallest 
eigenvalue (P2(m2))  as given by equation (31) for ICX-step walks in three dimensions. 

L Eigenvalue 

Figure 9. Probability distribution Pn(A)  as given by equation (31) in three dimensions for 
IW-steD walks. 
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Eigenvalue 

Figure 10. Probability distribution P,(A) as given by equation (31) in 30 dimensions for 
100-step walks. 

Eigenvalue 

Figure 11. Probability distribution P<(A) as given by eqaution (31)  in d = LOO for LOO-step 
walks. 
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When comparing the ratios of the eigenvalues, the predictions are worse in two 
dimensions as expected. Higher-order corrections lead to the poorer agreement and 
this is probably due to the previously discussed overlap of the distribution that is not 
taken into account in this expansion. The agreement gets better as the dimension 
increases. In five dimensions, the difference between the data and the predictions of 
the l / d  expansion is about 2.2% and the result is well within the error bar. 

4.3. Probability distribution of the principal radii of gyration in various spatial dimensions 

In this section, we investigate the behaviour of the distribution function for the 
individual principal components of the radius of gyration in various spatial dimensions. 
This will provide information about the behaviour of the resolvent ( R ( A ) )  between 
consecutive eigenvalues and its peaks in these intervals. The analysis is carried out 
numerically. The results indeed show that there is only a single peak at  low dimensions. 
Figure 9 displays the curve of the probability distribution P ( A )  against the eigenvalue 
A in three dimensions where P(A)=P,(A)+P,(A)+P,(h) with Pi(.\) are defined as 
obtained before in our previous paper (Gaspari et al 1986). They satisfy 

where the quantity C. is adjusted to normalize the probability distribution E.(A) to 1 .  
It is clear that there exists only one peak in three dimensions. In other words the 

peaks that correspond to the total distribution overlap at lower dimensionality. These 
peaks start to be well separated only in relatively high spatial dimensions. For instance, 
figure 10 shows the separation of the peaks for the largest and next-largest eigenvalues 
in 30 dimensions. The existence of the three well separated peaks, as shown in figure 
11,  occurs at very high dimensions ( d  = 100). 

Our method of extracting the eigenvalues up to any higher order in 1 f d assumes 
that the imaginary part of the averaged resolvent (R(A) ) ,  is very small in some interval 
between consecutive eigenvalues and therefore this quantity has very well-separated 
peaks. However, as we have seen, this condition is satisfied only at high dimensions. 
In lower dimensionality, the existence of only one peak represents a limitation on the 
accuracy of the l / d  expansion for any but the largest eigenvalue; this is indeed verified 
when comparing the predictions of the 1 f d expansion to second order in l f d  for the 
smaller eigenvalues with the numerical results. 

Appendix 

In this appendix we illustrate how the resolvent function ( R ( A ) )  is obtained to 
order l /d2  using the diagrammatical method. We consider here only one diagram 
(figure 5(b)). The same analysis is used for the others. 

The double lines represent pair averages. For instance, the irreducible pairings of 
the 7 s  in the three sets yield 
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The remaining pairings are all of adjacent 7s. By careful consideration of the effects 
of the delta functions generated by these pairings, we arrive at the following result for 
the contribution of this diagram to (Tr(l/A)"): 

which is just 

As can be established by inspection, the number of different ways of forming this 
diagram is n ( n  - m - 1). Therefore its total contribution to (Tr(T/A)") is 

n ( n  - m - 1) - i2 Tr (:)" - Tr(;)"-" 

= - n ( n - m - 1 ) 1  1 (;)"e)"-" - 

d 2  i ,i  

1 
= - n ( n - m - 1 )  1 

d 2  ii 
i # j  

Now we sum over all 'locations' of the non-adjacent pairings and obtain 

Using standard results for geometrical series, we find that the final contribution to 
(Tr(T/A)") of the diagram becomes 

(A4) 
1 ( a i / A )  2(aj /V2 

'2 z j  [ l  - (a,/A)] [ l  -(ai/A)I3' 

A similar analysis can be camed for all diagrams contributing to (Tr(T/A)"). Here we 
consider only the ones contributing to l /d2  corrections. The expressions assigned to 
each diagram are listed below. 

Contribution from figure S(a):  
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Contribution from figure 5 ( d ) :  

1 (at/N3 -1 d 2  i [l -(aC/A)l4’ 
Similarly we obtain the following results from the reducible diagrams. 
Contribution from ( a )  in table 2: 

Contribution from ( e ) :  

Contribution from (d): 

Contribution from (e): 

Contribution from (f): 
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